A family of flat connections on the projective space having dihedral monodromy and algebraic Garnier solutions

نویسندگان

چکیده

A. Girand has constructed an explicit two-parameter family of flat connections over the complex projective plane ℙ 2 . These have dihedral monodromy and their polar locus is a prescribed quintic composed conic three tangent lines. In this paper, we give generalization construction. That is, construct n-parameter space n Moreover, discuss relation between these Garnier system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)

We have classified special solutions around the origin for the two-dimensional degenerate Garnier system G(1112) with generic values of complex parameters, whose linear monodromy can be calculated explicitly.

متن کامل

K-FLAT PROJECTIVE FUZZY QUANTALES

In this paper, we introduce the notion of {bf K}-flat projective fuzzy quantales, and give an elementary characterization in terms of a fuzzy binary relation on the fuzzy quantale. Moreover, we  prove that {bf K}-flat projective fuzzy quantales are precisely the coalgebras for a certain comonad on the category of fuzzy quantales. Finally, we present two special cases of {bf K} as examples.

متن کامل

On monodromy of complex projective structures

We prove that for any nonelementary representation p: nl(S)-, SL(2, ~) of the fundamental group of a closed orientable hyper-bolic surface S there exists a complex projective structure on S with the monodromy p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la Faculté des Sciences de Toulouse

سال: 2021

ISSN: ['0240-2963', '2258-7519']

DOI: https://doi.org/10.5802/afst.1682